

SIES College of Arts, Science & Commerce (Autonomous)

Department of Statistics

Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for F.Y.B.Sc. (Credit Based Semester and Grading System with effect from the academic year 2021–2022)

SEMESTER I

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS I			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
PAPER I SIUSSTA11	Ι	TYPES OF DATA AND DATA CONDENSATION	1	
	II	MEASURES OF CENTRAL TENDENCY	1	2
	III	MEASURES OF DISPERSION, SKEWNESS & KURTOSIS	1	
TITLE OF COURSE	STATISTICAL METHODS I			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	ELEMENTARY PROBABILITY THEORY	1	
PAPER II SIUSSTA12	II	RANDOM VARIABLES	1	2
	III	STANDARD DISCRETE DISTRIBUTIONS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP1	SIUSSTA11	3	2
	SIUSSTA12	3	2

SEMESTER II

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS II			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
PAPER I SIUSSTA21	Ι	CORRELATION AND REGRESSION ANALYSIS	1	
	II	TIME SERIES	1	2
	III	VITAL STATISTICS	1	
TITLE OF COURSE	STATISTICAL METHODS II			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
PAPER II SIUSSTA22	Ι	STANDARD CONTINUOUS DISTRIBUTIONS	1	
	II	ESTIMATION	1	2
	III	TESTING OF HYPOTHESIS AND LARGE SAMPLE TESTS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP2	SIUSSTA21	3	2
	SIUSSTA22	3	

SYLLABUS FOR F.Y.BSc. UNDER AUTONOMY SEMESTER I PAPER I

- To be well versed with data collection techniques.
- To effectively use data visualization and summarization techniques to understand data.

Course Code	Title	Credits
SIUSSTA11	DESCRIPTIVE STATISTICS I	2 Credits
		(45 lectures)
UNIT I: TYPI	ES OF DATA AND DATA CONDENSATION	15 Lectures
Types of data:	Qualitative and Quantitative data, Time series data and cross section	
data, discrete a	nd continuous data. Different types of scales: nominal, ordinal,	
interval, and ra	tio. Experimental and observational data.	
Concept of pop	ulation and sample. Census and Sample survey. Relative merits and	
demerits. Statis	tical Organizations and their functions (CSO, NSSO). Survey findings.	
Primary data: C	Concept of a questionnaire and a schedule. Secondary data: Sources.	
Case studies ill	ustrating use of Statistics in different sectors.	
Diagrams: Bar	diagrams, Pie diagram	
Classification a	nd Tabulation of categorical data up to order three. Association of	
attributes: Yule	e's coefficient of association (Q), Yule's coefficient of Colligation (Y).	
UNIT II: ME	ASURES OF CENTRAL TENDENCY	15 Lectures
Univariate freq	uency distribution of discrete and continuous variables. Cumulative	
frequency distr	ibution. Graphical representation of frequency distribution by	
Histogram, Fre	quency curve, Cumulative frequency curves, Stem and leaf diagram.	
Central tendend	cy of data. Requisites of a good measure of central tendency. Positional	
averages: Medi	an, Mode, Partition Values: Quantiles. Mathematical averages:	
Arithmetic mea	n (Simple mean, trimmed mean, weighted mean, combined mean),	
Geometric mea	n, Harmonic mean. Merits and demerits of different measures.	
UNIT III: ME	ASURES OF DISPERSION, SKEWNESS & KURTOSIS	15 Lectures
Concept of disp	persion. Requisites of good measure of dispersion.	
Absolute meas	ares of dispersion: Range, Quartile Deviation, Mean absolute	
deviation, Stan	dard deviation, and corresponding relative measures of dispersion.	
Combined vari	ance.	
Raw & Central	moments and relationship between them.	
Concept of Ske	wness and Kurtosis: Absolute and Relative measures of Skewness:	
Karl Pearson's	Bowley's and Measure based on moments. Measure of Kurtosis based	
on moments.		
Box &Whisker	Plot.	

SEMESTER I: PRACTICALS BASED ON COURSE SIUSSTA11 To be solved manually & using MS Excel.

1.	Tabulation
2.	Theory of Attributes
3.	Classification of Data
4.	Diagrammatic and Graphical Representation
5.	Measures of Central tendency
6.	Measures of Dispersion
7.	Moments, Measures of Skewness and Kurtosis

PAPER II

- To understand the concepts of probability and probability distribution
- To study the concept of random variables-Discrete & Continuous

Course	Title	Credits
Code		
SIUSSTA12	STATISTICAL METHODS I	2 Credits
		(45 lectures)
UNIT I: ELE	MENTARY PROBABILITY THEORY	15 Lectures
Random exper exclusive and e Classical (Math their properties	iment, Sample space, Event, Operation of events, mutually exhaustive events. hematical), Empirical (Statistical) definitions of Probability and s. Subjective probability.	
Theorems on A Independence of Conditional pro-	Addition and Multiplication of probabilities. of events, pairwise and mutual independence of three events. obability, Bayes' theorem.	
UNIT II: RAN	NDOM VARIABLES	15 Lectures
Concept of dis- cumulative dis Expectation of Raw and Centr Concepts of Sk two discrete & distributions. C for both discret	crete & continuous random variables: Probability distribution and tribution function, definition, and their properties. a random variable. Theorems on Expectation & Variance. ral moments and their relationships (up to order four). tewness and Kurtosis. Joint (Bivariate) probability distribution of continuous random variables. Marginal and conditional Coefficient of Correlation. Independence of two random variables te and continuous random variables.	
UNIT III: ST Discrete Unifo variance and re Binomial appre	ANDARD DISCRETE DISTRIBUTIONS rm, Hypergeometric, Binomial and Poisson distributions: mean, ecurrence relation for probability, fitting of distribution. oximation to Hypergeometric distribution. Poisson approximation stribution.	15 Lectures

SEMESTER I: PRACTICALS BASED ON COURSE SIUSSTA12 To be solved manually & using MS Excel.

1.	Probability
2.	Random Variable -Discrete
3.	Random Variable -Continuous
4.	Bivariate probability distributions
5.	Standard Discrete Distribution-Binomial
6.	Standard Discrete Distribution-Poisson
7.	Standard Discrete Distribution-Hypergeometric

SYLLABUS FOR F.Y. BSc. UNDER AUTONOMY

SEMESTER II PAPER I

- To forecast and predict future trends in time series.
- To explore the concept of vital statistics to study the population movement.

Course Code	Title	Credits
SIUSSTA21	DESCRIPTIVE STATISTICS II	2 Credits
		(45 lectures)
UNIT I: COR	RELATION AND REGRESSION ANALYSIS	15 Lectures
Bivariate frequ	ency distribution, marginal and conditional distribution, Scatter	
Diagram, Bubb	le chart. Product moment correlation coefficient and its properties.	
Spearman's Ra	nk correlation (with and without ties).	
Linear regressi	on. Fitting a straight line by method of least squares. Coefficient	
of determination	n .Relation between regression coefficients and correlation	
coefficient.		
Fitting of curve	es reducible to linear form by transformation. Fitting a quadratic	
curve by metho	d of least squares.	
UNIT II: TIM	E SERIES	15 Lectures
Definition of ti	me series. Its components. Models of time series.	
Exponential Sr	noothing method.	
Estimation of t	rend by: Freehand curve, Method of semi averages, Method of	
Moving averag	es, Method of least squares (linear trend only).	
Merits and den	erits of these methods.	
Estimation of s	easonal component by, Method of simple averages, Ratio to	
moving averag	e method, Ratio to trend method.	
UNIT III: VII	TAL STATISTICS	15 Lectures
Definition, Use	s of vital statistics, Methods of obtaining vital statistics.	
Measurement of	f population, Rates & Ratios of vital events.	
Measurement of	f mortality: Crude Death rate, Specific death rates, Infant	
Mortality rate,	Standardized death rate	
Measurement of	f fertility: Crude birth rate, General Fertility rate, Specific fertility	
rate, Total ferti	lity rate	
Measurement of	f population growth: Crude rate of natural increase (Pearle's Vital	
index), Gross r	eproduction rate, Net reproduction rate	
Merits & Demo	erits of all measurements.	

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA21 To be solved manually & using MS Excel.

1.	Correlation analysis
2.	Regression analysis
3.	Correlation & Regression analysis
4.	Curve fitting
5.	Time series I
6.	Time series II
7.	Vital Statistics-I
8.	Vital Statistics-II

PAPER II

- To interpret the Bell curve and other distributions used in data analysis.
- To assess population characteristics based on sample using estimation and testing theory.

Course Code	Title	Credits
SIUSSTA22	STATISTICAL METHODS II	2 Credits
		(45 lectures)
UNIT I: STAN	NDARD CONTINUOUS DISTRIBUTIONS	15 Lectures
Uniform, Expo	nential (with location, scale parameter) and Normal distribution.	
Derivations of	mean, median and variance of Uniform and Exponential	
distribution. La	ack of memory property of exponential distribution.	
Properties of N	formal distribution. Use of normal tables. Normal approximation to	
Binomial and I	Poisson distribution.	
UNIT II: EST	IMATION	15 Lectures
Parameter, stat	istic, estimator and estimate, sampling distribution, bias and	
standard error of an estimator.		
Central Limit t	heorem (statement only).	
Sampling distr	ibutions of sample mean and sample proportion. (For large sample	
only)		
Point and Inter	val estimate of mean and proportion based on single sample of	
large size and difference between two means and proportions based on large		
sample sizes.		
UNIT III: TE	STING OF HYPOTHESES AND LARGE SAMPLE TESTS	15 Lectures
Null and altern	ate hypotheses, Simple and composite hypothesis. Type I and II	
errors, Critical	region, Size of the test, Level of significance. Power of the test.	
Applications of	f Normal Distribution: Tests for specified value of population	
mean and popu	lation proportion. Tests for equality of two population means and	
population pro-	portions.	

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA22 To be solved manually & using MS Excel.

1. Standard Continuous distributions	
2. Central limit theorem	
3. Testing of Hypothesis	
4. Point and Interval Estimation	
5. Estimation	
6. Testing of Hypothesis	
7. Large Sample Test	

REFERENCES:

- 1. Agarwal B.L. (1978). *Basic Statistics*: New Age International Ltd.
- 2. David S.(1994). *Elementary Probability*: Cambridge University Press.
- Goon A.M., Gupta M.K.&Dasgupta B. (1968). *Fundamentals of Statistics*, Volume II: The World Press Private Limited, Calcutta.
- 4. Gupta S.C.& Kapoor V.K.(2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 5. Gupta S.C.& Kapoor V.K.(2014). Fundamentals of Applied Statistics: Sultan Chand & Sons
- 6. Hoel P.G.(1947). Introduction to Mathematical Statistics: Asia Publishing House
- 7. Hogg R.V. & Tannis E.P.(1977). Probability and Statistical Inference: McMillan Publishing Co. Inc.
- 8. Kothari C.R.(1985). Research Methodology: Wiley Eastern Limited.
- 9. Medhi, J. (2013). Statistical Methods, An Introductory Text. Second Edition: New Age International Ltd.
- 10. Pitan Jim. (1977) . Probability: Narosa Publishing House.
- 11. Spiegel M.R. (1961). Theory and Problems of Statistics. Schaum's Publications series: Tata McGraw-Hill.

EXAMINATION PATTERN

Internal Assessment of Theory per Course per Semester

1. Class Test	20 Marks.
2. Project / Assignment / Presentation etc.	20 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of 2 hours duration and 60 marks based on the three units shall be held for each course.

Pattern of Theory question paper:

There shall be four compulsory questions of 15 marks each (with Internal Option).

Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

Semester End Practical Examination per Course

1. Journal	5	Marks
2. Practical Examination (Written)	30	Marks
3. Practical Examination (MS Excel)	15	Marks

Pattern of Practical examination:

- One and a half hour will be allotted to attempt practical exam & 30 minutes for exam on MS Excel for each paper.
- There shall be three compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III.